Winnipeg Free Press - PRINT EDITION

I, Cyborg

Scientists are making great strides (literally) in developing the brain-computer interface

  • Print

TEMPE, Ariz. - Behind a locked door in a white-walled basement in a research building in Tempe, Ariz., a monkey sits stone-still in a chair, eyes locked on a computer screen. From his head protrudes a bundle of wires; from his mouth, a plastic tube. As he stares, a picture of a green cursor on the black screen floats toward the corner of a cube. The monkey is moving it with his mind.

The monkey, a rhesus macaque named Oscar, has electrodes implanted in his motor cortex, detecting electrical impulses that indicate mental activity and translating them to the movement of the ball on the screen. The computer isn't reading his mind, exactly -- Oscar's own brain is doing a lot of the lifting, adapting itself by trial and error to the delicate task of accurately communicating its intentions to the machine. (When Oscar succeeds in controlling the ball as instructed, the tube in his mouth rewards him with a sip of his favorite beverage, Crystal Light.)

It's called a "brain-computer interface" (BCI). And it just might represent the future of the relationship between human and machine.

Stephen Helms Tillery's laboratory at Arizona State University is one of a growing number where researchers are racing to explore the breathtaking potential of BCIs and a related technology, neuroprosthetics. The promise is irresistible: from restoring sight to the blind, to helping the paralyzed walk again, to allowing people suffering from locked-in syndrome to communicate with the outside world. In the past few years, the pace of progress has been accelerating, delivering dazzling headlines seemingly by the week.

At Duke University in 2008, a monkey named Idoya walked on a treadmill, causing a robot in Japan to do the same. Then Miguel Nicolelis stopped the monkey's treadmill -- and the robotic legs kept walking, controlled by Idoya's brain. At Andrew Schwartz's lab at the University of Pittsburgh in December 2012, a quadriplegic woman named Jan Scheuermann learned to feed herself chocolate by mentally manipulating a robotic arm. Just last month, Nicolelis' lab set up what it billed as the first brain-to-brain interface, allowing a rat in North Carolina to make a decision based on sensory data beamed via Internet from the brain of a rat in Brazil.

So far the focus has been on medical applications -- restoring standard-issue human functions to people with disabilities. But it's not hard to imagine the same technologies someday augmenting capacities. If you can make robotic legs walk with your mind, there's no reason you can't also make them run faster than any sprinter. If you can control a robotic arm, you can control a robotic crane. If you can play a computer game with your mind, you can, theoretically at least, fly a drone with your mind.

It's tempting and a bit frightening to imagine that all of this is right around the corner, given how far the field has already come in a short time. Indeed, Nicolelis -- the media-savvy scientist behind the "rat telepathy" experiment -- is aiming to build a robotic bodysuit that would allow a paralyzed teen to take the first kick of the 2014 World Cup. Yet the same factor that has made the explosion of progress in neuroprosthetics possible could also make future advances harder to come by: the almost unfathomable complexity of the human brain.

From I, Robot to Skynet, we've tended to assume that the machines of the future would be guided by artificial intelligence -- that our robots would have minds of their own. Over the decades, researchers have made enormous leaps in artificial intelligence (AI), and we may be entering an age of "smart objects" that can learn, adapt to, and even shape our habits and preferences. We have planes that fly themselves, and we'll soon have cars that do the same. Google has some of the world's top AI minds working on making our smartphones even smarter, to the point that they can anticipate our needs. But "smart" is not the same as "sentient." We can train devices to learn specific behaviours, and even out-think humans in certain constrained settings, like a game of Jeopardy. But we're still nowhere close to building a machine that can pass the Turing test, the benchmark for human-like intelligence. Some experts doubt we ever will.

Philosophy aside, for the time being the smartest machines of all are those that humans can control. The challenge lies in how best to control them. From vacuum tubes to the DOS command line to the Mac to the iPhone, the history of computing has been a progression from lower to higher levels of abstraction. In other words, we've been moving from machines that require us to understand and directly manipulate their inner workings to machines that understand how we work and respond readily to our commands. The next step after smartphones may be voice-controlled smart glasses, which can intuit our intentions all the more readily because they see what we see and hear what we hear.

The logical endpoint of this progression would be computers that read our minds, computers we can control without any physical action on our part at all. That sounds impossible. After all, if the human brain is so hard to compute, how can a computer understand what's going on inside it?

It can't. But as it turns out, it doesn't have to -- not fully, anyway. What makes brain-computer interfaces possible is an amazing property of the brain called neuroplasticity: the ability of neurons to form new connections in response to fresh stimuli. Our brains are constantly rewiring themselves to allow us to adapt to our environment. So when researchers implant electrodes in a part of the brain that they expect to be active in moving, say, the right arm, it's not essential that they know in advance exactly which neurons will fire at what rate. When the subject attempts to move the robotic arm and sees that it isn't quite working as expected, the person -- or rat or monkey -- will try different configurations of brain activity. Eventually, with time and feedback and training, the brain will hit on a solution that makes use of the electrodes to move the arm.

That's the principle behind such rapid progress in brain-computer interface and neuroprosthetics. Researchers began looking into the possibility of reading signals directly from the brain in the 1970s, and testing on rats began in the early 1990s. The first big breakthrough for humans came in Georgia in 1997, when a scientist named Philip Kennedy used brain implants to allow a "locked in" stroke victim named Johnny Ray to spell out words by moving a cursor with his thoughts. (It took him six exhausting months of training to master the process.) In 2008, when Nicolelis got his monkey at Duke to make robotic legs run a treadmill in Japan, it might have seemed like mind-controlled exoskeletons for humans were just another step or two away. If he succeeds in his plan to have a paralyzed youngster kick a soccer ball at next year's World Cup, some will pronounce the cyborg revolution in full swing.

Schwartz, the Pittsburgh researcher who helped Jan Scheuermann feed herself chocolate in December, is optimistic that neuroprosthetics will eventually allow paralyzed people to regain some mobility. But he says that full control over an exoskeleton would require a more sophisticated way to extract nuanced information from the brain. Getting a pair of robotic legs to walk is one thing. Getting robotic limbs to do everything human limbs can do may be exponentially more complicated. "The challenge of maintaining balance and staying upright on two feet is a difficult problem, but it can be handled by robotics without a brain. But if you need to move gracefully and with skill, turn and step over obstacles, decide if it's slippery outside -- that does require a brain. If you see someone go up and kick a soccer ball, the essential thing to ask is, 'OK, what would happen if I moved the soccer ball two inches to the right?'" The idea that simple electrodes could detect things as complex as memory or cognition, which involve the firing of billions of neurons in patterns that scientists can't yet comprehend, is far-fetched, Schwartz adds.

-- Slate

Oremus is the lead blogger for Future Tense, reporting on emerging technologies, tech policy and digital culture.

Republished from the Winnipeg Free Press print edition April 13, 2013 J14

Fact Check

Fact Check

Have you found an error, or know of something we’ve missed in one of our stories?
Please use the form below and let us know.

* Required
  • Please post the headline of the story or the title of the video with the error.

  • Please post exactly what was wrong with the story.

  • Please indicate your source for the correct information.

  • Yes

    No

  • This will only be used to contact you if we have a question about your submission, it will not be used to identify you or be published.

  • Cancel

Having problems with the form?

Contact Us Directly
  • Print

You can comment on most stories on winnipegfreepress.com. You can also agree or disagree with other comments. All you need to do is be a Winnipeg Free Press print or e-edition subscriber to join the conversation and give your feedback.

You can comment on most stories on winnipegfreepress.com. You can also agree or disagree with other comments. All you need to do is be a Winnipeg Free Press print or e-edition subscriber to join the conversation and give your feedback.

Have Your Say

New to commenting? Check out our Frequently Asked Questions.

Have Your Say

Comments are open to Winnipeg Free Press print or e-edition subscribers only. why?

Have Your Say

Comments are open to Winnipeg Free Press Subscribers only. why?

The Winnipeg Free Press does not necessarily endorse any of the views posted. By submitting your comment, you agree to our Terms and Conditions. These terms were revised effective April 16, 2010.

letters

Make text: Larger | Smaller

LATEST VIDEO

Étienne Gaboury: Manitoba "shining light" of architecture

View more like this

Photo Store Gallery

  • A mother goose has chosen a rather busy spot to nest her eggs- in the parking lot of St Vital Centre on a boulevard. Countless cars buzz by and people have begun to bring it food.-Goose Challenge Day 06 - May 08, 2012   (JOE BRYKSA / WINNIPEG FREE PRESS)
  • MIKE DEAL / WINNIPEG FREE PRESS 060711 Chris Pedersen breeds Monarch butterflies in his back yard in East Selkirk watching as it transforms from the Larva or caterpillar through the Chrysalis stage to an adult Monarch. Here an adult Monarch within an hour of it emerging from the Chrysalis which can be seen underneath it.

View More Gallery Photos

Poll

Do you think Judy Wasylycia-Leis will greatly benefit from the endorsement by Winnipeg's firefighters?

View Results

View Related Story

Ads by Google