Winnipeg Free Press - PRINT EDITION

Wet dog teaching scientists new tricks

  • Print

When a wet dog shakes itself dry, it does something amazing. It hits just the right rhythm to maximize the drying effect with minimal effort.

The seemingly casual jiggle imparts enough centrifugal force to expel 70 per cent of the water in its coat in a fraction of a second.

This fact comes courtesy of experiments by David Hu, a professor of mechanical engineering and biology at Georgia Tech. He and his students found 30 other furry mammals share the highly tuned drying ability.

Hu thinks engineers can learn from some of the remarkable features evolution has built into living things. He envisions harnessing this ability for devices that can dry or clean themselves -- something such as a Mars rover programmed to jiggle the dust off its solar panels.

He was initially inspired to study wet mammals by a toy poodle named Jerry, who was a gift to his current fiancée from her former boyfriend. Jerry ended up in Hu's lab, where high-speed cameras recorded and measured the rhythm by which he shook his coat dry.

Before Jerry, Hu had been interested in the way animals interact with water, but his focus had been on the insect world. Thanks to the surface tension of water, many insects can easily get stuck in a puddle or pond once they get wet. Predatory bugs called water striders -- the subject of Hu's doctoral thesis -- get around this with hairy feet that barely touch the water's surface.

The adaptation allows striders to make dinner out of less water-adapted insects.

Hu realized that surface tension also trapped water on mammals, and shaking was a common adaptation that helped them deal with it. The project expanded from Jerry to guinea pigs, lab mice and a house cat.

In search of more mammals, Hu sent one of his graduate students to the Atlanta Zoo to spritz water on lions, tigers and bears, and record their drying techniques.

Fur, said Hu, is great for keeping animals insulated in cold air. It's not so good when it rains or when a furry animal falls into a frigid lake. Then, the fur can hold in cold water next to an animal's skin. A thoroughly wet 60-pound Labrador retriever, for example, holds about a pound of water.

Letting it dry by evaporation would sap energy equal to 20 per cent of the dog's daily calories.

If an animal needs to get rid of the water to stay warm, then it's much more efficient to shake. Hu's study showed most of the mammals that were observed did it. He watched shaking mice, rats, cats, goats, sheep, lions, tigers, bears and giant pandas, to name a few. But the big surprise was that there was a predictable pattern across all these species -- all imparted about the same amount of centrifugal force to expel water.

The force depends on the size of the animal and the frequency of the shake, Hu said, so to get the same force, little animals shake faster than big ones. Bigger dogs shake about three or four times a second; mice, about 30 times.

The water-expelling force also depends on how big the shakes are -- their amplitude -- said Hu, and most of the animals studied added oomph to each shake by having loose skin.

A dog, for example, shakes his spine through an angle of about 30 degrees, but his floppy skin swings through a full 90-degree angle.

Hu and students Andrew Dickerson and Zachary Mills published their results in the Journal of the Royal Society Interface, which specializes in work that combines biology and engineering.

Shaking is a useful adaptation, but did it show up in some ancestral mammal millions of years ago, or did it evolve independently in different lines? That's hard to say, said evolutionary biologist Frank Fish of West Chester University. Fish said mammals probably co-opted the ability to shake, which originated far back in the evolutionary tree. Sharks, for example, do some fast twisting to help them tear up their prey.

"We can see the ability to twist all the way back to the first vertebrate."

One mammal that doesn't seem too well-equipped to shake dry is the human being. Hu said he tried it once after a shower when he forgot to take a towel.

"It didn't work very well," he said. Humans don't have fur, so perhaps our ancestors lost the ability somewhere along the evolutionary line. There's also one type of hairless guinea pig that doesn't shake off water, he said. "They just sit there and shiver."


-- The Philadelphia Inquirer

Republished from the Winnipeg Free Press print edition September 8, 2012 J12

Fact Check

Fact Check

Have you found an error, or know of something we’ve missed in one of our stories?
Please use the form below and let us know.

* Required
  • Please post the headline of the story or the title of the video with the error.

  • Please post exactly what was wrong with the story.

  • Please indicate your source for the correct information.

  • Yes


  • This will only be used to contact you if we have a question about your submission, it will not be used to identify you or be published.

  • Cancel

Having problems with the form?

Contact Us Directly
  • Print

You can comment on most stories on You can also agree or disagree with other comments. All you need to do is be a Winnipeg Free Press print or e-edition subscriber to join the conversation and give your feedback.

You can comment on most stories on You can also agree or disagree with other comments. All you need to do is be a Winnipeg Free Press print or e-edition subscriber to join the conversation and give your feedback.

Have Your Say

New to commenting? Check out our Frequently Asked Questions.

Have Your Say

Comments are open to Winnipeg Free Press print or e-edition subscribers only. why?

Have Your Say

Comments are open to Winnipeg Free Press Subscribers only. why?

The Winnipeg Free Press does not necessarily endorse any of the views posted. By submitting your comment, you agree to our Terms and Conditions. These terms were revised effective April 16, 2010.